Rellable and responsible
data use

Pang Wei Koh
University of Washington & Al2

W Ail2



Rellable and responsible
data use

Pang Wei Koh
University of Washington & Al2

W Ail2



Data is driving progress in ML
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Data is driving progress in ML

nature

Article | Open access | Published: 22 May 2024

A whole-slide foundation model for digital pathology
fromreal-world data

1B histopathology tiles

5B image-text pairs

3B protein sequences



Data is driving progress in ML

A lot of exciting work ahead on improving data quantity & quality

DataComp-LM: In search of the next generation of
training sets for language models

dlMq




This talk — beyond data sourcing & filtering

We'll cover:
1. Scaling up data at inference time
2. Training on synthetic data

3. Evaluating on interaction data



Scaling up data at inference

Scaling Retrieval-Based Language Models

with a Trillion-Token Datastore

Rulin Shao, Jacqueline He,

Akari Asai, Weijia Shi, Tim Dettmers,

Sewon Min, Luke Zettlemoyer, Pang Wei Koh. 2024,

i : ﬁ
Rulin Shao Jacqueline He



Standard: Data stored in model parameters
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Standard: Data stored in model parameters

Does immunotherapy work on solid tumors?

Yes, in some cases. Pembrolizumab can treat
solid tumors that are mismatch repair
deficient or microsatellite-instability-high, but
serious adverse reactions include...
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Does immunotherapy work on solid tumors?

Yes, in some cases. Pembrolizumalb can treat
solid tumors that are mismatch repair
deficient or microsatellite-instability-high [1],

\ Model _——"_ but serious adverse reactions include...

Doesn’t naturally support:
1. Attribution for verification, credit
2. Using source info

3. Updating data Mismatch between

data vs. parameters



Directly using data for inference via retrieval

« Can we build models where data points are first-class citizens?

Datastore
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Does immunotherapy work on solid tumors?
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Efficacy of Pembrolizumab in Patients With Noncolorectal High
Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From
the Phase Il KEYNOTE-158 Study

Marabelle et al., Journal of Clinical Oncology, 2020

Genomes of tumors that are deficient in DNA mismatch repair (dAMMR) have
high microsatellite instability (MSI-H) and harbor hundreds to thousands of
somatic mutations that encode potential neoantigens. Such tumors are

DataStO e therefore likely to be immunogenic... -

Does immunotherapy work on solid tumors?

Yes, in some cases. Pembrolizumalb can treat
solid tumors that are mismatch repair
deficient or microsatellite-instability-high [1],
but serious adverse reactions include...

[1] Marabelle et al., Results from KEYNOTE-
158, Journal of Clinical Oncology, 2020.



Datastore

Efficacy of Pembrolizumab in Patients With Noncolorectal High
Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From
the Phase Il KEYNOTE-158 Study

Marabelle et al., Journal of Clinical Oncology, 2020

Genomes of tumors that are deficient in DNA mismatch repair (dAMMR) have
high microsatellite instability (MSI-H) and harbor hundreds to thousands of
somatic mutations that encode potential neoantigens. Such tumors are

therefore likely to be immunogenic. .. -

Does immunotherapy work on solid tumors?

Yes, in some cases. Pembrolizumab can treat
solid tumors that are mismatch repair
deficient or microsatellite-instability-high [1],
but serious adverse reactions include...

[1] Marabelle et al., Results from KEYNOTE-
1568, Journal of Clinical Oncology, 2020.

Naturally supports:
1. Attribution

2. Using source info
3. Updating data



Prior work on retrieval-based models

» Focus on small curated datastores, knowledge-intensive QA

Reference # Tokens Data Sources Open sourced
ATLAS (Izacard et al.,|2023) <5B  Wikipedia X
REALM (Guu et all, 2020) <5B  Wikipedia X
RALM (Ram et al/, 2023) <5B  Wikipedia v
SELF-RAG (Asai et all,2024a) <5B  Wikipedia v
REPLUG (Shi et al., 2023)* 47B  The Pile v
RA-DIT (Lin et all,2024) 79B  Wikipedia, CommonCrawl X
SPHERE (Piktus et al., 2022) 90B CCNet v
RETRO++ (Wang et al.,|2024) 330B* The Pile, CommonCrawl, RealNews, CC-Stories X
INSTRUCTRETRO (Wang et al.,2024) 1.2T* Wikipedia, CommonCrawl, RealNews, CC-Stories, Books X
RETRO (Borgeaud et al.,|2022) 1.7T* MassiveText (Rae et al., 2022) X
MASSIVEDS (Ours) 14T 8 domains, listed in Table[2 v




Our work: Scaling the retrieval datastore

Domain Datasets Size (B)
BOOKS RPJ Books 26.3
STEM peS20, RPJ ArXiv 97.7
ENCYCLOPEDIA DPR 2018 Wiki, RPJ 2022 Wiki 31.9
FORUM (Q&A) RPJ StackExchange 20.2
CODE RPJ Github S2:8
MATH OpenWebMath, NaturalProofs 14.1
BIOMEDICAL  PubMed 6.5

GENERAL WEB RPJ CC (2019-2023), RPJ C4 1191.7
Total 1441.2




Building datastores: Our pipeline

Naive Pipeline Change Data Composition
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Each different choice of size,
composition, filters, etc. requires
rebuilding the datastore



Building datastores: Our pipeline
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DS scaling improves language modeling
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DS scaling improves downstream tasks
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DS scaling improves downstream tasks
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DS scaling improves downstream tasks”
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Compute-optimal scaling
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Compute-optimal scaling
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Compute-optimal scaling
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Compute-optimal scaling
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Takeaways

« Scaling datastores in depth + breadth improves performance
» Efficient use of training-time and even inference-time compute

e Retrieval-based models allow us to reason about data as first-
class citizens (while improving performance/efficiency)



Future directions

Efficacy of Pembrolizumab in Patients With Noncolorectal High
Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From
the Phase Il KEYNOTE-158 Study

Marabelle et al., Journal of Clinical Oncology, 2020

Genomes of tumors that are deficient in DNA mismatch repair (dAIMMR) have "| A-t-t ri b u-t i O n
high microsatellite instability (MSI-H) and harbor hundreds to thousands of .
somatic mutations that encode potential neoantigens. Such tumors are

Da‘tastore therefore likely to be immunogenic... - 2 . USi ng SOU rce info

Does immunotherapy work on solid tumors? 3 . U pdat| ng data

Yes, in some cases. Pembrolizumab can treat
solid tumors that are mismatch repair
deficient or microsatellite-instability-high [1],
but serious adverse reactions include...

[1] Marabelle et al., Results from KEYNOTE-
1568, Journal of Clinical Oncology, 2020.



Training on synthetic data

The Unmet Promise of Synthetic Training Images.
Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford,
Chun-Liang Li, Pang Wei Koh, Ranjay Krishna. 2024.

Scott Geng



The promise of training on synthetic data

* Model distillation
» Alpaca (Taori et al., 2023)
* Phi-3 (Microsoft, 2024)



The promise of training on synthetic data

« Can we use synthetic data to improve the best models?
 Self-Instruct (Wang et al., 2022)
« SynCLR (Tian et al., 2023)

The emergent self-improvement capability.
(Liu et al., 2024)



Prior work: SynCLR

« Generate 150M captions (Llama2-7B) - 600M images (SD 1.5)
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ViT-B/16 | 80.2 | 59.5 | 86.7 792 981 931 784 947 928 89.2 85.7
VIT-L/14 | 839 | 694 1909 82.1 992 951 &1.8 965 952 89.6 889
ViT-B/16 | 80.7 | 81.7 1938 799 99.1 936 762 953 91.6 894 89.0
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CLIP real real 400M

SynCLR syn syn  600M

[Tian et al., 2024]



Our work: Studying synthetic vs. real data

* What is driving these gains?

* Hypothesis: Controllability of the training distribution

source prob.
IN-1k 0.47
Aircraft 0.05
Cars 0.05
Food 0.05
Flowers 0.03
Places-365, SUN397 | 0.09
IN-21k and others 0.26

[Tian et al., 2024]



Our work: Studying synthetic vs. real data
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Our work: Studying synthetic vs. real data
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Our work: Studying synthetic vs. real data
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Test Set Image! Retrieved Real Images i Generated Synthetic Images

“Airbus A320”

v
\\ : e
s .7/
= B 5
' -

“Flute”



ZS Accuracy (%)

LP Accuracy (%)

3 ImageNet-1K DTD FGVC-Aircraft StanfordCars Flowers102
64_ 70_
721 | 90 |
oy 60 80
711 50. 88
601 75 -
701 401 86 -
581
691 30 84 - 70
56 1
68— ! | | | ——— 1 o ———— 1 g2l | | | — 651 | | | .
256 512 102420484096 16 32 64 128256512 16 32 64 128 256512 16 32 64 128 256 16 32 64 128 256
83 87 90
821 86 1 98- 99 -
81 85 - 801 96 - 98 -
801 841 941 97 -
70
791 831 92 - 96 -
8- ' | . gl T epolV———+—————1 90—~ . . . — 951 . . . .
256 512 102420484096 16 32 64 128256512 16 32 64 128 256512 16 32 64 128 256 16 32 64 128 256

Log-Scale Adaptation Dataset Size (K)

Off-the-shelf CLIP




~ ;5__ImageNet-1K DTD FGVC-Aircraft StanfordCars Flowers102
o J
X 641 70
> 7% 6o - 60 1 901 80 |
J
o 71 50 88
| ] _
= 60 75
o 707 ‘\.\“‘H 40 86 1
J 58 -
n 56 -
Neg———-—mr —« —— ——bvrn— 200" 82— ———— 65—
256 512 102420484096 16 32 64 128256512 16 32 64 128256512 ~ 16 32 64 128 256 16 32 64 128 256
-~ 83 87 90
<
82 86 - 98 99 -
o 50
© 81 85 - 96 og { A==k ==F=g
|
3 80{ A —&—4—44—iA | 84 M a—a—a——a—a | 971
U 70'.—/
<L 79; 83 92 96 -
Q.
-

8 T T T T T 82
256 512 102420484096

T T T T T T 60
16 32 64 128 256 512

Off-the-shelf CLIP

« Synthetic data helps*

16 32 64 198256512 °
Log-Scale Adaptation Dataset Size (K)

T T T ' T 95
16 32 64 128 256

—4+— Finetuned on Synthetic Data

16 32 64 128 256




ZS Accuracy (%)

68

83

LP Accuracy (%)

72 -

71

70

69 1

82 1

811

80 -

791

ImageNet-1K DTD FGVC-Aircraft StanfordCars Flowers102
64- 70
] 90 ]
62 60 80
ﬁ 501 881
60 75
40 86 1
58
561
- J 29t gpl— T gpl—+
256 512 102420484096 16 32 64 128256512 16 32 64 128256512 16 32 64 128 256 16 32 64 128 256
87 90
85 | 80-/ 96 1 98 |
;‘——f’“"—"ﬂ—‘ 84 - 70_./ 94-‘: —t—t—2 97 -
SB-W\‘ 921 96

Off-the-shelf CLIP

81— : : . — 82
256 512 102420484096

T T T T T J 60
16 32 64 128 256512

« Synthetic data helps*
* Retrieved data > synthetic data

16 32 64 128256512 °
Log-Scale Adaptation Dataset Size (K)

—+— Finetuned on Synthetic Data

T T T ' ' 95
16 32 64 128 256

16 32 64 128 256

—+— Finetuned on Retrieved Data




Issues with synthetic data

 General distortions
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Issues with synthetic data

* General distortions
e Class-relevant distortions
« Can be completely wrong




Issues with synthetic data

» General distortions

» Class-relevant distortions

« Can be completely wrong

* Differences in “semantic” distribution

“Tabby Cat”

!




Takeaways

« Synthetic data allows controllability (e.g., sampling more images
from target classes)

* For image classification, currently: synthetic data < retrieved data
* Burg et al., 2023; Zhou et al., 2023

* Definitely not ruling out synthetic data
* Open question: When and why should we use synthetic data”



1) Synthetic data + external models

e Japanese

MICEBRZES < —
RREVZRFS

[ N
A common Kkiji

walking through the
fall flood plain

Multilingual Diversity Improves Vision-Language Representations
Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma,
Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, Ranjay Krishna. 2024.




2) Synthetic data + verifiers

1. Information-maximizing objective for Summarization

S~
Document x - Summary y | " Find (x,y) such that PMI(x;y) > a and % <p"
X
o

Information-Theoretic Distillation for Reference-Less Summarization
Jaehun Jung, Ximing Lu, Liwei Jiang, Faeze Brahman, Peter West,
Pang Wei Koh, Yejin Choi. 2024.

Jaehun Jung



Evaluating on interaction data

MEDIQ: Question-Asking LLMs for Adaptive and Reliable Clinical Reasoning |}
Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan ligen,
Emma Pierson, Pang Wei Koh, Yulia Tsvetkov. 2024.

i _‘_‘
Stella Li




Interaction data

 Most data in Web crawls are static
 News
« Books
» Wikipedia
» Papers

 Even data from user interaction on sites like Reddit are not that
iInteractive



Our work: Evaluation in interactive settings

Hi doctor, | have fever and night sweats...
This is how the symptom started: ......

Hi doctor, | have fever and night sweats.
What is happening? What should | do?

| have these family medical history: ......
| am on these medications: ...... @

Here is my physical exam report: ...... < Realistic
| had blood test, here are the results: ......
And my ultrasound and CT results: ...

What should | do?

Standard
benchmarks

%



How do state-of-the-art LLLMs do?

Hi doctor, | have fever and night sweats.

What is happening? What should | do?

e

t'&; Hello, I'm sorry to hear that you're not feeling well. Fever can be a symptom of various underlying conditions, so it's important to address it
properly. Here are some general steps you can take:

1. Stay Hydrated: Drink plenty of fluids, such as water, herbal tea, or clear broths, to prevent dehydration. Fever can lead to increased
fluid loss through sweating, so it's important to replenish.

2. Rest: Your body needs energy to fight off whatever is causing the fever, so get plenty of rest. Avoid strenuous activities and allow your
body to recuperate.

3. Medication: Over-the-counter fever reducers like acetaminophen (Tylenol) or ibuprofen (Advil, Motrin) can help reduce fever and
alleviate discomfort. Follow the dosage instructions on the package and avoid exceeding the recommended dose.

4. Monitor Your Temperature: Keep track of your temperature regularly. If your fever persists for more than a few days, or if it's
accompanied by other concerning symptoms like difficulty breathing, severe headache, chest pain, or a rash, it's important to seek
medical attention promptly.

5. Treat Underlying Cause: Fever is often a symptom of an underlying infection, such as the flu or a respiratory infection. If you suspect
you have an infection, it's essential to treat the root cause. In some cases, antibiotics may be necessary, but only if prescribed by a
healthcare professional.

6. Comfort Measures: To help alleviate discomfort associated with fever, you can try taking a lukewarm bath or using a damp cloth to
sponge your body. Dress in lightweight clothing and use lightweight blankets if you feel chilled.

7. Seek Medical Attention: If your fever is high (above 103°F or 39.4°C), persists for more than three days, or is accompanied by severe
symptomes, it's crucial to seek medical attention promptly. Your healthcare provider can assess your condition, determine the
underlying cause, and recommend appropriate treatment.

Remember, these are general guidelines, and it's important to consult with a healthcare professional for personalized advice based on your
specific situation. If you have any concerns or questions, please don't hesitate to reach out.




A more realistic interaction

Hi doctor, | have fever and night sweats.

What is happening? What should | do?
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A more realistic interaction
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Converting static to interactive benchmarks

* MedQA [1]: ~12k US Medical
License Exam questions

* Craft-MD [2]: 140 skin
disease case vignettes

[1] Jin et al., 2020
[2] Johri et al., 2024

question: "Which of the following is the most likely cause
of this patient's anemia?”

options: (A) Vitamin B12 deficiency, (B) Gestational
anemia, (C) Iron deficiency, (D) Thalassemia trait

Initial Info: “A 27-year-old GI1PO woman at 9 weeks
estimated gestational age presents for a prenatal visit.”
context: "A 27-year-old G1PO woman at 9 weeks estimated
gestational age presents for a prenatal visit. She is
vegetarian and emigrated from Nepal 7 years ago. She does
not use tobacco, alcohol or recreational drugs. The
patient’s vital signs include: blood pressure 111/95 mm Hg,
temperature 36.7C (98.6F), pulse 88/min. Laboratory results
are significant for the following: | Hemoglobin 10.2 g/dL |
Erythrocyte count 5.5 million/mm3 | Mean corpuscular volume
65 um3 | Mean corpuscular hemoglobin 21 pg/cell | Red cell
distribution width 13.5% (ref: 11.5-14.5%)."



The MEDIQ framework

Question Expert System

----------------- ? °
»* 0
> %

-




The MEDIQ framework

Question Expert System

----------------- ? °
D >0
> %

J
!

{ Enough information to answer?J




The MEDIQ framework

Question Expert System

[Enough information to answer?]

)
[ Information Seeking Question ]4——-/ No




The MEDIQ framework
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The MEDIQ framework
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Model Non-Interactive

Task Full
Llama-2-70b 42.88

Llama-3-8b 68.06

iMEDQA  Llama-3-70b 84.66
GPT-3.5 55.78

GPT-4 79.70

. GPT-3.5 82.14
ICRAF-MD o 9143

question: "Which of the following is the most likely cause
of this patient's anemia?”

options: (A) Vitamin B12 deficiency, (B) Gestational
anemia, (C) Iron deficiency, (D) Thalassemia trait

Initial Info: “A 27-year-old G1PO woman at 9 weeks
estimated gestational age presents for a prenatal wvisit.”
context: "A 27-year-old G1PO woman at 9 weeks estimated
gestational age presents for a prenatal visit. She is
vegetarian and emigrated from Nepal 7 years ago. She does
not use tobacco, alcohol or recreational drugs. The
patient’s vital signs include: blood pressure 111/95 mm Hg,
temperature 36.7C (98.6F), pulse 88/min. Laboratory results
are significant for the following: | Hemoglobin 10.2 g/dL |
Erythrocyte count 5.5 million/mm3 | Mean corpuscular volume
65 um3 | Mean corpuscular hemoglobin 21 pg/cell | Red cell
distribution width 13.5% (ref: 11.5-14.5%)."



Non-Interactive

Task Model  “"p il Limited
Llama-2-70b 42.88 36.74
Llama-3-8b 68.06 52.01
iMEDQA  Llama-3-70b 84.66 58.46
GPT-3.5 55.78 45,55
GPT-4 79.70  54.45
] GPT-3.5 82.14 53.57
ICRAFEMD "Cory 9143 67.86

question: "Which of the following is the most likely cause
of this patient's anemia?”

options: (A) Vitamin B12 deficiency, (B) Gestational
anemia, (C) Iron deficiency, (D) Thalassemia trait

Initial Info: “A 27-year-old G1PO woman at 9 weeks

estimated gestational age presents for a prenatal wvisit.”
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Non-Interactive Interactive

Task Model gl Limited BAsIC
Llama2-70b 42.88 3674  29.98

Llama3-8b 68.06 5201  33.04

iMEDQA  Llama-3-70b 84.66 5846  55.07
GPT-35 5578 4555 4217

GPT-4 7970 5445 5539

. GPT35 8214 5357 4500
ICRAFT-MD  “oory 9143 6786 7357

11% relative drop!

_/

question: "Which of the following is the most likely cause
of this patient's anemia?”

options: (A) Vitamin B12 deficiency, (B) Gestational
anemia, (C) Iron deficiency, (D) Thalassemia trait

Initial Info: “A 27-year-old G1P0 woman at 9 weeks
estimated gestational age presents for a prenatal visit.”
context: "A 27-year-old G1PO woman at 9 weeks estimated
gestational age presents for a prenatal visit. She is
vegetarian and emigrated from Nepal 7 years ago. She does
not use tobacco, alcohol or recreational drugs. The
patient’s vital signs include: blood pressure 111/95 mm Hg,
temperature 36.7C (98.6F), pulse 88/min. Laboratory results
are significant for the following: | Hemoglobin 10.2 g/dL |
Erythrocyte count 5.5 million/mm3 | Mean corpuscular volume
65 um3 | Mean corpuscular hemoglobin 21 pg/cell | Red cell

distribution width 13.5% (ref: 11.5-14.5%)."



Non-Interactive Interactive

Task Model Full Limited BASIC BEST
Llama-2-70b 42.88 36.74 29098 35.56

Llama-3-8b 68.06 52.01 33.04 45.79

iMEDQA Llama-3-70b 84.66 58.46 55.07 60.90
GPT-3.5 55.78 45.55 4217 50.20

GPT-4 79.70 54.45 55.39 66.09

] GPT-3.5 82.14 53.57 45.00 59.29
ICRAFT-MD  cor )’ 9143 6786 7357 84.29

N

20% relative gap

question: "Which of the following is the most likely cause
of this patient's anemia?”

options: (A) Vitamin B12 deficiency, (B) Gestational
anemia, (C) Iron deficiency, (D) Thalassemia trait

Initial Info: “A 27-year-old G1P0 woman at 9 weeks
estimated gestational age presents for a prenatal visit.”
context: "A 27-year-old G1PO woman at 9 weeks estimated
gestational age presents for a prenatal visit. She is
vegetarian and emigrated from Nepal 7 years ago. She does
not use tobacco, alcohol or recreational drugs. The
patient’s vital signs include: blood pressure 111/95 mm Hg,
temperature 36.7C (98.6F), pulse 88/min. Laboratory results
are significant for the following: | Hemoglobin 10.2 g/dL |
Erythrocyte count 5.5 million/mm3 | Mean corpuscular volume
65 um3 | Mean corpuscular hemoglobin 21 pg/cell | Red cell

distribution width 13.5% (ref: 11.5-14.5%)."



Conformal inference

* Instead of predicting a single label, predict a set of potential labels
« Guaranteed coverage: % that true label is in the prediction set

_o!‘ |
Eric Frankel Stella Li




Conformal inference
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Takeaways

* Many tasks are naturally interactive
* Whereas current data/benchmarks are largely static

* More work needed to fill this gap
* Amie from Google [McDuff et al., 2024]
« Uncertainty of Thoughts [Hu et al., 2024]

Try MEDIQ out: https://stellalisy.com/projects/mediQ/



https://stellalisy.com/projects/mediQ/

This talk: Reliable & responsible data use

1. Scaling up data at inference time
2. Training on synthetic data
3. Evaluating on interaction data

pangwei@cs.washington.edu
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